Geophysical Research Abstracts, Vol. 10, EGU2008-A-08851, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-08851 EGU General Assembly 2008 © Author(s) 2008

Analysis of coordination environment of aluminum species in zeolites by X-ray fluorescence, XAFS and EXEFS

T. Yamamoto, T. Kudo, T. Yamamoto and J. Kawai Department of Materials Science and Engineering, Kyoto University

The coordination environments of Al species in zeolite NaY and HZSM-5, amorphous silica-aluminas (SA), and reference compounds were analyzed by means of X-ray absorption, extended X-ray emission fine structure (EXEFS), and high resolution X-ray fluorescence (XRF) spectroscopes. Al K-edge XANES spectra of NaY, HZSM-5 and SA (14wt% as Al2O3) were quite similar to that of AlPO4, aluminum species of which is tetrahedral. XANES spectra of six coordinated Al3+ species give higher absorption edge than those of four coordinated species by 2 eV or that of Al foil by 7 eV, and higher white lines. The EXEFS spectra of Al foil, alpha-Al2O3 and AlPO4 were similar to those of XANES spectra. EXEFS spectrum of NaY was similar to that of AlPO4, but the spectrum quality of HZSM-5 was not enough to discuss due to the low Al concentration. The clear chemical shift and changes in line-widths were observed in Al K-alpha spectra among four- and six-coordinated aluminum compounds recorded using a double-crystal spectrometer. All the XANES, EXEFS and XRF spectra of zeolite samples were corresponded to those of four-coordinated reference compound. It clearly shows that these three kinds of spectroscopic techniques are also useful for coordination environmental analysis of Al species as well as 27Al NMR.