Geophysical Research Abstracts, Vol. 10, EGU2008-A-08773, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-08773 EGU General Assembly 2008 © Author(s) 2008

A new observational system for remote in-situ measurements of atmospheric trace gases in Namibia

R.L. Thompson, M. Heimann, T. Seifert, F. Hänsel and U. Schultz Max Planck Institute for Biogeochemistry, Jena, Germany

It is a considerable challenge to make high-precision, continuous *in-situ* measurements of atmospheric trace gases, especially in remote locations where equipment must be run with little or no technical assistance. We present an observational system for measurements of atmospheric CO₂, CH₄, CO and O₂, which is applicable for remote locations. This system employs a novel method for CO₂ and CH₄ measurements based on Cavity Ring Down Spectroscopy (CRDS) developed by Picarro Inc. Using the CRDS instrument (model ESP-1000) we expect to achieve a CO₂ precision of <0.02 ppm and CH₄ precision of <0.3 ppb (1 σ SD over 1 min). This method is linear for CO₂ and CH₄, has very low drift and requires no consumables. For CO, we use a VUV resonance fluorescence method (Aerolaser, model AL5001) achieving a precision of <1.5 ppb (1 σ SD over 1 min) and for O₂, a fuel-cell technique (Sable Systems, model OXZILLA-FCII) with a precision of <0.1 ppm (1 σ SD over 1 min).

It is planned that the system will be installed near the Gobabeb Training and Research Center, Namibia ($23^{\circ}35^{\circ}S$, $15^{\circ}.00^{\circ}E$, 456 m asl) in order to measure the atmospheric signals from air-sea gas exchange (of CO₂ and O₂) in the region of the Benguela Current, as well as to fill a conspicuous gap in the global observation network. Furthermore, some information from land fluxes in the African sub-continent will be contained in the atmospheric signal, which will provide an additional constraint on emissions of greenhouse gases from this region.