Geophysical Research Abstracts, Vol. 10, EGU2008-A-07865, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-07865 EGU General Assembly 2008 © Author(s) 2008

Cosmogenic ³He and ³⁶Cl determinations from lava flows from Fogo (14[•]N) and Stromboli (38[•]N): Implications for production rates and scaling grids

Jurgen Foeken (1), Irene Schimmelpfennig (2), Fin Stuart (1), K. Wilcken (3) and C. Schnabel (4)

(1) Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, UK, (2) CEREGE, Aix en Provence, France, (3) AMS Laboratory, SUERC, East Kilbride, UK, (4) NERC Cosmogenic Isotope Analyses Facility, SUERC, East Kilbride, UK (j.foeken@suerc.gla.ac.uk)

Surface exposure dating utilising Terrestrial Cosmogenic Nuclides (TCNs) has emerged as a powerful tool in deciphering exposure histories, erosion rates, landscape evolution, etc. The CRONUS-EU network aims to tackle the two main uncertainties that hamper accurate application of TCNs to these processes: (i) accurate knowledge of production rates and (ii) the scaling of the production rates with altitude and latitude. While the production rate of cosmogenic ³He is one of the best established, the cosmogenic ³⁶Cl production rate is poorly constrained mainly due to the uncertainties in the relative contributions of the various target elements (mainly Ca and K, but also Fe and Ti) as well as production pathways. Both cosmogenic nuclides can be measured on the same rock type (e.g, basalt), and therefore allows inter-calibration of these two TCNs. Basalt flows that have been independently dated (e.g., ⁴⁰Ar/³⁹Ar or 14C) allow ³He and ³⁶Cl production rates to be established while the ³He/³⁶Cl of lava flows allow the production rate of ³⁶Cl to be normalised.

Here we present new cosmogenic ³He (pyroxene and olivine) and ³⁶Cl (basalt whole rock) data from 2 lava flows from Fogo (Cape Verdes, 14°N) and Stromboli (Italy, 38°N). Cosmogenic ³He concentrations in pyroxene separates from the Fogo and Stromboli yield $8.28 \pm 0.4 \ 10^6 \ (4.4\%, n = 11)$ and $2.27 \pm 0.4 \ 10^5 \ (5.0\%, n = 10)$

atoms/g ³He respectively. These correspond to exposure ages of 120 ± 4 ka and 7.2 ± 0.3 ka. Preliminary ³⁶Cl data from 4 of the samples replicates to ~7%. The Fogo lava flow will be dated by ⁴⁰Ar/³⁹Ar and will yield accurate ³He and ³⁶Cl production rate determinations. Comparison of ³He/³⁶Cl between the Fogo and Stromboli lava flows, combined with newly published ³He/³⁶Cl data from Iceland (64°N, Licciardi et al., 2008; Licciardi et al., 2006) will allow a first test of whether isotope-specific scaling factors are required.

.Licciardi, J.M., Denoncourt, C.L., and Finkel, R.C., 2008, Cosmogenic ³⁶Cl production rates from Ca spallation in Iceland: *Earth Planet. Sci. Lett.*, p. In Press, Available online.

Licciardi, J.M., Kurz, M.D., and Curtice, J.M., 2006, Cosmogenic 3He production rates from Holocene lava flows in Iceland: *Earth Planet. Sci. Lett.*, v. 246, p. 251-264.