Geophysical Research Abstracts, Vol. 10, EGU2008-A-03026, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-03026 EGU General Assembly 2008 © Author(s) 2008

EISCAT-STARE study of irregularity drifts in high-latitude E region and wave-wave interaction

M. Uspensky and R. Pellinen

Finnish Meteorological Institute, Helsinki, Finland (mikhail.uspensky@fmi.fi / Fax: +358 9 19294603 / Phone: +358 9 19294690)

The purpose of the present study is to examine the EISCAT plasma velocity measurements in the auroral E region with emphasis at the STARE irregularity flow velocity dependence on the line-of-sight (los or 1-o-s) electron flow magnitude, V_{ExB}^{los} , and the flow angle $\Theta^{N,F}$. (Superscript N and/or F means the STARE Norway and Finland radar). We found that in the noon-evening sector the flow angle dependence of multi-pulse ACF Doppler velocities, $V_{irr}^{N,F}$, inside and outside of Farley-Buneman (FB) instability cone (where $|V_{ExB}^{los}|$ is more or less than the local ion acoustic speed C_s , respectively) was similar and much weaker than earlier suggested. In a band of flow angles $45^o < \Theta^{N,F} < 85^o$ it can be reasonably described as $\left|V_{irr}^{N,F}\right| \propto A_{N,F}C_s \cos^n \Theta^{N,F}$, where $A_{N,F} \approx 1.2$ -1.3 are weakly monotonically increasing functions of V_{ExB} and the index n is ~0.2 or even smaller. The present study (a) does not support the conclusion by Nielsen and Schlegel (1985), Nielsen et al. (2002, [18]) that at the flow angle of more than ~60° (or $\left|V_{irr}^{N,F}\right| \leq 300$ m/s) the STARE Doppler velocities are equal to the component of the electron flow velocity. We also found (b) that for any bin with the l-o-s electron flow magnitude, V_{ExB}^{los} , the largest STARE Doppler velocities are always inside the largest flow angle bin. In the largest flow angle bin the Doppler velocity is also larger than its 1-o-s electron flow velocity component, $\left|V_{irr}^{N,F}\right| > \left|V_{ExB}^{los}\right|$. Both features (a and b) and the too weak flow angle dependence are experimental proof that the l-o-s electron flow velocity cannot be the single factor, which controls the motion of the backscattering \sim 1-m irregularities at the large flow angles. An important fact for this study is also that the intense backscatter was collected at aspect angle $\sim 1^{\circ}$ and mainly at flow angle $\Theta > 60^{\circ}$, where the linear fluid and kinetic theories cannot explain the excitation of irregularities. All the facts can be reasonably explained involving the nonlinear wave-wave coupling developed and described by Kudeki and Farley (1989) for the equatorial electrojet and studied in numerical simulation by Otani and Oppenheim (1998, 2006).