Geophysical Research Abstracts, Vol. 10, EGU2008-A-00172, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-00172 EGU General Assembly 2008 © Author(s) 2008

Explicit analysis and simulation of an ozone photochemical episode in Santiago, Chile

Y. Elshorbany (1,2), P. Wiesen (1), J. Kleffmann (1), R. Kurtenbach (1), M. Rubio (3), E. Lissi (3), G. Villena (3), A. R. Rickard (4), M.J. Pilling (4)

(1) Department of Physical Chemistry, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany, (2) Environmental Sciences Division, National Research Center, Dokki, Giza, Egypt, (3) Facultad de Quimica y Biologica, Universidad de Santiago de Chile, Alameda L. Bernardo O'Higgins 3363, Santiago, Chile, (4) School of Chemistry, University of Leeds, Leeds, UK (elshorbany@uni-wuppertal.de / Fax: +49(202)4392757)

Santiago experiences frequent pollution episodes and as a consequence very high ozone concentrations. Health problems associated with these ozone episodes include daily mortality and hospital admissions for respiratory illnesses. The development of ozone abatement strategies requires the determination of the contribution of each hydrocarbon to ozone formation, taking into account the kinetic and mechanistic properties in addition to the air matrix structure. In this work, the photochemical formation of ozone during a summer campaign, carried out from the 8^{th} - 20^{th} March 2005, has been simulated using a photochemical box model based on the Master Chemical Mechanism (MCMv3.1, http://mcm.leeds.ac.uk/MCM). The MCM model has been constrained with ten minutes average of the simultaneously measured HONO, HCHO, CO, NO, $J(O^1D)$, $J(NO_2)$, VOCs and meteorological parameters and the O₃- NO_{x} -VOC sensitivity has been studied by simulating the ozone at different VOC and NO_{τ} concentrations. Ozone production model sensitivity showed that photochemical ozone formation is VOC-limited. Reduction in levels of ozone during episodic pollution events in Santiago requires the concurrent reduction of both VOC and NO_x emissions. The results of the model simulations have been compared with a set of potential empirical indicator relationships including H_2O_2/HNO_3 , H_2O_2/NO_z , O_x/NO_z . The individual contributions of each hydrocarbon to ozone formation has been determined from the photochemical MCM model and compared with those calculated using the photochemical ozone creation potential, POCP.