

## Sensitivity studies for a space-based $\mathbf{CO}_2$ laser sounder development

J. Mao (1), S. R. Kawa (2), J. B. Abshire (2), H. Riris (2), X. Sun (2), G. J. Collatz (2), J. Burris (2), and M. Stephen (2)

(1) RS Information Systems, Inc., McLean, VA 22102

(2) NASA Goddard Space Flight Center, Greenbelt, MD 20771

(Email: Jianping.Mao@gsfc.nasa.gov)

There is great need for global high spatial- and temporal-resolution remote sensing of atmospheric CO<sub>2</sub> concentration for global and regional studies of the carbon cycle. The biggest challenge for CO<sub>2</sub>remote sensing is to achieve high measurement precision so that such measurement is valuable to reduce uncertainties about carbon sources and sinks [1-2]. Compared to the strong CO<sub>2</sub>thermal infrared bands such as 15  $\mu$ m and 4.3  $\mu$ m used by the Atmospheric Infrared Sounder (AIRS) on Aqua, the 1.6  $\mu$ m CO<sub>2</sub> band in the near-infrared allows higher sensitivity of variability near the Earth's surface and thus greater potential to achieve valuable remote sensing of CO<sub>2</sub> concentration near the Earth's surface. The Orbiting Carbon Observatory (OCO [3]) is using this band to make atmospheric CO<sub>2</sub> measurement via reflected sunlight.

However, a major hurdle to obtaining high-precision  $CO_2$  measurement using sunlight is the influence of aerosols and cirrus clouds in the sunlight path. Scattering by particles will modify the path length of sunlight and thus changes the total column  $CO_2$  absorption [4]. Even with the help of a correlative measurement approach using multiple bands as adopted by OCO, the scattering effect could cause errors larger than the target  $CO_2$  measurement precision requirement (0.3% or 1 ppmv).

NASA Goddard Space Flight Center is developing a laser technique for a mission to follow OCO [5]. Its aim is to use lasers to overcome many of the  $CO_2$  measurement error sources, including scattering effects in order to meet the ultimate measurement precision goal. The laser technique uses the same  $CO_2$  absorption band. It uses 6 laser

wavelengths across one strong absorption line centered at 1.572  $\mu$ m. The focus of the laser measurement is on the CO<sub>2</sub> in the lower troposphere atmosphere CO<sub>2</sub>. The lasers are pulsed and the surface return echo signal can be well isolated from those scattered by the atmosphere. It uses a common nadir-zenith measurement path and a small receiver field of view which further reduces the effect of scatter, which also greatly reduce the influence of scatter.

In this paper, we report the results of our line-by-line radiative transfer calculation results for this laser technique. These include those of absorption line selection, selection of laser frequencies for vertical atmospheric  $CO_2$  information in association with their weighting functions, and the measurement sensitivity to atmospheric temperature and pressure.

In addition, the simultaneous measurement of surface pressure is required in order to compute the CO<sub>2</sub> mixing ratio from the CO<sub>2</sub> column abundance and to separate actual CO<sub>2</sub> flux from variations in atmospheric density. The measurement technique for surface pressure will be similar to that for CO<sub>2</sub> but uses the O<sub>2</sub> A-band near 0.768  $\mu$ m. The radiative transfer calculations for the surface pressure measurement will be also reported in the paper.

Our work to date shows that the optimal absorption line for the laser technique is at the center of the R-branch of the CO<sub>2</sub> vibration-rotational absorption band ( $\sim 1.572 \ \mu$ m). Selection of a few laser wavelengths along the line allows absorption peaked at different altitudes relative to the vertical distribution of CO<sub>2</sub>. Among them, one weighting function is peaked in the atmospheric boundary layer where the carbon sources and sinks are located, thus providing an enhanced sensitivity to quantify the near-surface processes controlling the global and regional carbon budget. Results so far show that this band has weak but still significant sensitivity to atmospheric temperature and that it is required to have simultaneous atmospheric temperature measurements (i.e., by AIRS) for both CO<sub>2</sub> and surface pressure measurements will be assessed and discussed.