Geophysical Research Abstracts, Vol. 9, 10519, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-10519 © European Geosciences Union 2007

Zircon U-Pb ages from late Frasnian K-bentonites of Frasnes (Belgium)

S. Lasalle (1), F. Guillot (1), J.L. Paquette (2), O. Averbuch (1), P. Pellenard (3), J.F. Deconinck (3), X. Devleeschouwer (4), A. Herbosch (5)

(1) Univ. Lille, Sci. Terre & CNRS-UMR PBDS, F-59650 Villeneuve d'Ascq, France, (2)
Univ. Blaise Pascal, CNRS-UMR Magmas et Volcans, 5 rue Kessler, F-63038
Clermont-Ferrand cedex, France, (3) Univ. Dijon, CNRS-UMR Biogéosciences, 6 blvd.
Gabriel, F-21000 Dijon, France, (4) Belgian Geol. Surv., rue Jenner 13, B-1000 Bruxelles,
Belgium, (5) Univ. Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 160/02, B-1050 Bruxelles,
Belgium
(lasallestephanie@wanadoo.fr)

In the Lion quarry near Frasnes-lez-Couvin, a 50 m-thick calcschist sequence is exposed, pertaining to the Late Frasnian, *[Palmatolepis] jamieae* to lower *rhenana* conodont zones. It comprises seven K-bentonite levels, L1 to L7 from bottom to top. L1 and L2 yielded no zircon. L3 to L7 contain euhedral zircon crystals (details in companion abstracts of Lasalle *et al.*, Guillot & Lasalle). The U-Pb geochronology was aimed at bracketing the age of the Frasnian-Famennian boundary.

The available zircon crystals are restricted in size to the range 32–125 μ m. Smaller crystals being subject to more severe Pb-loss, dating attempts were performed only on zircon fractions > 60 μ m. Conventional datings by isotope dilution – thermally induced mass spectrometry (ID–TIMS) were completed by chemical abrasion (CA–TIMS) attempts at Clermont-Ferrand (JLP).

Discordant U-Pb isotope ratios were found from L4, L5, L7. Only L3 and L6 zircons have yielded concordant, high quality data. For L3, a concordant age of 377.2 \pm 0.5 Ma, based on 10 concordant fractions including several CA-TIMS fractions, was obtained. L6 fractions were of poorer quality. However L6 zircons yielded a concordant age of 370.4 \pm 0.6 Ma based on 4 fractions by CA–TIMS.

A recently published estimation of the Frasnian-Famennian boundary from Kaufmann

et al. (2004, J. Geol.) at 376.1 \pm 1.7, was based on a 377.2 \pm 1.7 Ma result from a K–bentonite of the upper *rhenana* zone. Our best quality results, obtained on L3, are identical within error to their results. However, L3 belongs to a stratigraphically lower conodont zone (lower *rhenana*), so the age determination of Kaufmann *et al.* might be somewhat too old (see also abstracts by Lasalle *et al.* and Guillot & Lasalle).

Validating our CA–TIMS result for L6 at 370.4 \pm 0.6 Ma is less straightforward. It would imply that the lower *rhenana* conodont zone would have lasted more than 5 Ma, surprisingly far from the average ~1 Ma classically considered. It would also imply that the Frasnian-Famennian boundary would be younger than 371 Ma. Obviously, such assertions require supplementary data.