Geophysical Research Abstracts, Vol. 9, 09263, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-09263 © European Geosciences Union 2007



## Natural abundance N and O isotope composition of KCl-extractable soil nitrate from distinct agricultural treatments in southern Alberta, Canada

**L. Rock** (1), B.H. Ellert (2)

(1) Environmental Engineering Research Centre, Queen's University Belfast, Northern Ireland,

(2) Lethbridge Research Centre, Agriculture and Agri-Food Canada, Canada

(l.rock@qub.ac.uk / Phone: +44-(0)-28-9097-5633, ellertb@agr.gc.ca / Phone:

+1-403-317-2230)

The natural abundance of <sup>15</sup>N in NO<sub>3</sub><sup>-</sup> is rarely used to investigate N dynamics in agroecosystem studies. Most studies use 15N-enriched substances. Furthermore, the O isotopic signature on soil  $NO_3^-$  has received even less attention. The aim of this paper is to present preliminary findings of a study that investigated the  $\delta^{15}$ N and  $\delta^{18}$ O values of KCl-extractable soil nitrate from five agricultural treatments representing contrasting crops and N amendments which are part of a long-term irrigated cropping systems study. For each treatment, soil samples were collected from three replicate plots and five distinct depth intervals up to 90 cm during spring 2006. The N and O isotopic composition of nitrate were determined using the denitrifier technique. Considering the inherent variability among soil properties and microbial processes in the field, excellent reproducibility was observed among  $\delta$  values for replicate plots. The SE of the mean  $\delta^{15}$ N and  $\delta^{18}$ O values did not exceed 1.5%, in 90% and 70% of the cases, respectively. Furthermore, almost identical  $\delta$  values were obtained for the same soil samples that were extracted on two separate occasions. Mean  $\delta^{15}$ N values ranged from 0.4 to 7.9%, with the highest values generally being measured at depth. Mean  $\delta^{18}$ O values ranged from -4.8 to 12.3%, with the highest values generally measured for the top most soil layer. Integrating over the entire depth interval, soil nitrate from the various treatments were characterized by distinct  $\delta^{15}$ N and  $\delta^{18}$ O values. The lowest  $\delta^{15}$ Nand  $\delta^{18}$ O values of soil nitrate were measured for unamended alfalfa (+1.5%) and recent unamended cereal (-2.8% ), respectively. The highest  $\delta^{15}$ Nand  $\delta^{18}$ O values of soil nitrate were measured for recent unamended cereal (+6.5%) and recent

fertilized cereal (+4.5%,), respectively. Note that soil nitrate from a manured treatment was not characterized by the highest  $\delta^{15}$ N values, as might have been expected. This might be related to the timing of manure application which lastly occurred in 2001. For the top-most soil layer, significant differences in the  $\delta$  values between fertilized and unfertilized soil were observed, up to 6%, for  $\delta^{15}$ N and 17%, for  $\delta^{18}$ O. For the deeper soil layers, the long-term fertilized cereal treatment was characterized by the highest nitrate concentrations which increased with depth and by a concomitant increase in both  $\delta^{15}$ N and  $\delta^{18}$ O values relative to the other treatments. In summary, distinct differences in the N-15 and O-18 natural abundance of KCl-extractable soil nitrate between agricultural treatments and depth intervals were observed, which indicates the potential of adopting a dual natural abundance isotope approach to investigate soil N sources and transformations. Furthermore, the denitrifier technique may help to better understand what controls the  $\delta^{18}$ O value of soil nitrate, and provide more insight into the variability of  $\delta^{15}$ N values of soil nitrate.