Geophysical Research Abstracts, Vol. 9, 06258, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06258

© European Geosciences Union 2007

A comparison study on glider and satellite data from the eastern North Atlantic

J. Karstensen (1), P. Testor (2), P. Lherminier (3), T. Terre (3), U. Send (4), J. Sherman (4), R. Davis (4), G. Krahmann (1)

(1) Leibniz-Institut für Meereswissenschaften IFM-GEOMAR (Contact: jkarstensen@ifm-geomar.de), Kiel, Germany; (2) Laboratoire d'Océanographie et de Climatologie LOCEAN, Paris, France; (3) Laboratoire de Physique des Oceans, IFREMER, Plouzane, France; (4) Scripps Institution of Oceanography, San Diego, La Jolla, USA

Sea-surface temperature (SST) and chlorophyll-a (SCHL-a) data from two missions of an autonomous underwater vehicle glider in the eastern North Atlantic is compared with satellite data products. The physical forcing is very different during the missions: One mission (December 2005 to March 2006) is a record during intense mixed layer deepening in winter while the other (June 2006 to August 2006) is a record during a period of strong and rather shallow stratification in summer. The winter satellite SST and in particular SCHL-a suffer from cloud coverage and low sunlight conditions. A systematic difference between glider and satellite data can be identified and is apparently related to the mixed layer deepening. The summer satellite SST and SCHL-a compare well with the glider data in respect to along-track variability. However, the subsurface chlorophyll-a maximum is "invisible" for the satellite.