Geophysical Research Abstracts, Vol. 9, 05725, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-05725

© European Geosciences Union 2007

Constraining gas exchange parameterizations with 3 He/SF $_{6}$ tracer release experiments: Implications for global ocean CO $_{2}$ uptake

D.T. Ho (1), P. Schlosser (1), C.S. Law (2), M. Smith (2)

(1) Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA, (2) National Institute of Water and Atmospheric Research (NIWA), PO Box 14901 Kilbirnie, Wellington, New Zealand (email: david@ldeo.columbia.edu / Phone: +1 845.365.8706)

Air-sea gas exchange is an important process that strongly influences the global biogeochemical cycling of trace gases such as CO₂. Global ocean CO₂ uptake can be estimated by combining parameterizations of gas transfer velocities and global wind speeds with global maps of air-sea pCO₂ disequilibrium. Over the past decades, several widely used gas exchange parameterizations have been proposed, and the resulting estimates of global ocean CO₂ uptake differ by a factor of two (0.9 to 1.9 pgC vr⁻¹). A problem with some of the parameterizations is that they are based on limited data, typically lacking observations in high wind speed regimes (> 15 m s⁻¹). Recently, gas transfer velocities were obtained using the ³He/SF₆ dual tracer technique in the Southern Ocean over a range of wind speeds, including high wind conditions, during the SOLAS Air-Sea Gas Exchange (SAGE) experiment. Using a new gas exchange parameterization based on the SAGE ³He/SF₆ data yields global ocean CO_2 uptake of 1.3 \pm 0.3 pgC yr⁻¹, within the range of previous estimates. These ³He/SF₆-derived data have also enabled previously proposed gas exchange parameterizations to be evaluated. The two main results of this study are (1) By comparing the ³He/SF₆-based gas transfer velocity measurements from the Southern Ocean with measurements obtained from the coastal ocean, the universality of these gas exchange parameterizations could be established; (2) Addition of our new ocean CO₂ uptake estimates and evaluation of published gas exchange parameterizations leads to a reduction in the range of global ocean CO_2 uptake estimates (1.2 to 1.6 pgC yr⁻¹), bringing them in line with other model- and data-based approaches.