Geophysical Research Abstracts, Vol. 9, 05446, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-05446 © European Geosciences Union 2007

Application of the ¹⁸²Hf-¹⁸²W chronometer to eucrite zircon and initial solar ¹⁸²Hf abundance – a multicollector SIMS approach

M.J. Whitehouse (1) and G. Srinivasan (2)

(1) Swedish Museum of Natural History, Stockholm, Sweden, (2) Dept. of Geology, University of Toronto, Toronto, Canada (martin.whitehouse@nrm.se)

The decay of ¹⁸²Hf to ¹⁸²W ($t_{1/2} = 9$ Ma) is a very useful relative chronometer for time scales of core formation and silicate differentiation on planetary bodies. With high Hf (1-2%) and exceedingly low W (< 1ppm), zircon is ideally suited to determination of the ¹⁸²Hf abundance at the time of its formation. Previous attempts to investigate the Hf-W systematics of eucrite zircon using SIMS have suffered either from loss of signal in energy filtering, or inefficient peak-hopping monocollection. We report a novel analytical routine developed on the Cameca IMS 1270 using four ion counting electron multipliers (EMs) positioned to measure simultaneously the species ¹⁷⁸Hf⁺, ¹⁸²W⁺, ¹⁸³W⁺ and ¹⁸⁶W⁺. A mass resolution in excess of the highest nominally achievable (MRP = 8000) was used to eliminate REE oxide interferences. Calibration of Hf/W ratios followed a previously described method (Ireland et al., 2003) using Yb as a proxy for W in relative sensitivity factor calibration, with NIST SRM 610 and Geostandards 91500 zircon as reference materials.

Applying our method, we show that zircon in eucrites A881467 and A881388 formed 5.4 ± 5.2 Ma and 3.8 ± 3.5 million years respectively after metal-silicate differentiation on the eucrite parent body (4 Vesta). These relative ages suggest that zircons formed < 14.5 million years after the formation of CAIs and that primary igneous activity lasted for at least this long. Our estimated [182 Hf/ 180 Hf]_{SSI} of (2.2 ± 1.2) ×10⁻⁴ agrees at the lower limit of uncertainty with values inferred from chondrites. Zircon from a third eucrite, EET90020, have extremely low 182 Hf abundance suggesting partial melting (impact induced?) and crystallization when 182 Hf had decayed significantly and 26 Al and 60 Fe had ceased to be effective heat sources.