

CO₂ diffusion in polar ice: Observations from the Siple Dome ice core, Antarctica

J. Ahn (1,2), M. Headly (1), Martin Wahlen (1), E. J. Brook (2), P. A. Mayewski (3) and K. C. Taylor (4)

(1) Scripps Institution of Oceanography, University of California San Diego, California, USA,
(2) Oregon State University, Oregon, USA, (3) Climate Change Institute, University of Maine,
Maine, USA, (4) Desert Research Institute, University of Nevada, Nevada, USA
(jinhoahn@gmail.com / Fax: +1 541-737-1200 / Phone: +1 541-737-1209)

CO₂ in air trapped in polar ice cores provides important information about past changes in the global carbon cycle. One common assumption in interpreting ice core CO₂ records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the CO₂ diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO₂ associated with refrozen layers in ice core from Siple Dome, Antarctica, to study CO₂ diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electric conductivity, and Ca²⁺ ion concentration to show that substantial CO₂diffusion occurs in the ice on timescale of thousand of years. We estimate the permeation coefficient for CO₂ in ice (product of the diffusion constant and the solubility) as an order of 10^{-21} to 10^{-20} m²s⁻¹ mol CO₂ m⁻³ ice Pa⁻¹ CO₂ at -23 °C. This diffusion smoothes rapid changes of the CO2 record. However, the smoothing of the CO2 record by diffusion is one or two orders of magnitude smaller than the smoothing produced by the gas age distribution in our samples. Further studies should include estimation of (1) the permeation coefficient in different depths and temperatures and (2) the change of CO₂ mixing ratio during storage with permeation coefficients for the main air gases such as O₂ and N₂.