Geophysical Research Abstracts, Vol. 9, 03967, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-03967 © European Geosciences Union 2007

The importance of gas/solution exchange for CO₂ biomineralization into carbonates in the subsurface

S. Dupraz, B. Ménez and F. Guyot

Institut de Physique du Globe de Paris, Centre de Recherches de Stockage Géologique du CO₂ (IPGP/TOTAL/SCHLUMBERGER), Paris, France (dupraz@ipgp.jussieu.fr / Phone: +33-01.44.27.82.09)

Geological storage of CO₂ in the subsurface is an important option envisaged to mitigate enhanced CO_2 atmospheric greenhouse effect in the coming decades. The potentialities of certain subsurface microorganisms to induce CO₂ mineralization into carbonates could strongly enhance the stability of the CO₂ containment by cementing the borders or even stabilizing significant amounts of injected CO_2 into solid carbonates. Little is known, however, about the actual biochemical processes involved. CO2 mineralization experiments have been conducted using Bacillus pasteurii, an ureolytic model strain, which was inoculated in an artificial ground water and submitted to different conditions including variations in inoculum size, substrate amounts and CO₂ partial pressures. Complex pH/cell quantity/ureolytic activity evolutions were measured, evidencing strong interplays between enzymatic activity, calcite precipitation and CO₂ transfer at the gas/solution interface. Alkalinization due to the enzymatic hydrolysis of urea, part of which is shown to occur by extracellular processes, is regulated by the acidifying effect of CO₂ diffusion into the aqueous solution. The effect of strong cellular mortalities induced by calcite precipitation are investigated and quantified. Implications for constructing appropriate numerical and analogical models of CO₂ biomineralization in subsurface environments are finally discussed.