Geophysical Research Abstracts, Vol. 9, 02646, 2007 SRef-ID: © European Geosciences Union 2007

Effects of nitrogen and intensive mixing on decomposition of 14C-labelled maize (Zea mays L.) residue in soils of different land use types

H. Chen (1), N. Billen (1), K. Stahr (1), Y. Kuzyakov (2)

(1) Institute of Soil Science and Land Evaluation, University of Hohenheim, Germany, haiqingch12@yahoo.com

This study investigated the effects of mineral-N addition and intensive mixing (analogous to disturbance by plowing) on decomposition of 14C-labelled maize (Zea mays L.) residue and soil organic matter (SOM). Soils were collected from the upper 5 cm at Edelweiler, located in the Black Forest (Baden-Wĺźrttemberg, southwest Germany). Three land use types were investigated: plow tillage (PT), reduced tillage (RT) and grassland (GL). Soils were incubated for 112 days at 20 aãC, with or without 14Clabelled maize residue (4 g DM kg-1 soil), with or without nitrogen (100 mg N kg-1 soil as NH4NO3) and with or without intensive mixing. The effects of mineral-N on maize residues decomposition differed depending on the stage of decomposition and land use types. Nitrogen accelerated residue decomposition rates in the first 5 days in RT and GL soils, but not in PT soil, and decreased residues decomposition rates in all the three land use types after 11 days. At the end of the incubation, N suppressed 14CO2 efflux in RT and PT soils, but not in GL soil, and the magnitude of the N effects ranked in the order: RT>PT>GL. Mineral-N did not increase SOM decomposition in all land use types. Intensive mixing stimulated decomposition rates of both plant residues and SOM in all the three land use types. However, the mixing effects were smaller in GL soil than in RT or PT soil, because stronger soil aggregates in GL. Stronger soil aggregates were less disturbed by mixing and protected better SOM and plant residues against decomposition stimulated by mixing.