Geophysical Research Abstracts, Vol. 8, 10040, 2006 SRef-ID: 1607-7962/gra/EGU06-A-10040 © European Geosciences Union 2006

Sulfur isotope fractionation during microbial sulfate reduction associated with anaerobic methane oxidation

M.E. Böttcher (1,2), A. Boetius (1), Rickert D. (3)

(1) Max Planck Institute for Marine Microbiology, D-2839 Bremen, FRG, (2) Leibniz Institute for Baltic Sea Research, D-18119 Warnemünde, FRG, (3) GEOMAR Research Center, Wischhofstr., D-24148 Kiel, FRG (email: michael.boettcher@io-warnemuende.de)

Short sediment cores were recovered from the Hydrate Ridge during cruise 143 of RV SONNE in August 1999 by the use of a TV-guided multicoring device. Sediment at station 173 (760 m water depth) was covered by a dense bacterial mat of Beggiatoa sp., and sediment at station 185 (785 m water depth) was recovered from a mussel field of bivalves Calyptogena sp.. Pore waters were analyzed for the concentrations and isotopic composition of dissolved S species (H2S, sulfate), and chloride. The sediments were additionally analyzed for the contents in TOC, acid volatile sulfide (AVS), CrII-reducible S (pyrite, S°), and corresponding 34S/32S ratios. The vertical abundance of free and aggregate-related sulfate-reducing bacteria (SRB) was quantified by FISH. Sulfate reduction rates (SRR) were measured using the 35S-radiotracer technique. Due to bacterial sulfate reduction (BSR) associated with anaerobic methane oxidation (AMO) at stations 173 and 185 a depletion of the pore waters in dissolved sulfate took place within the first 5-10 cm and a corresponding increase in dissolved bisulfide up to more than 10 mM. Extremely high SRR were measured in the surface sediments (up to more than 5000 nmol cm-3 d-1) with corresponding high numbers of SRB. The community in the first cm of the sediment was dominated by Desulfosarcina/Desulfococcus sp.. BSR caused dissolved sulfate at stations 173 and 185 to became significantly enriched in 34S (up to +56 per mil). H2S, AVS (essentially H2S), and CrII-reducible S were enriched in 32S, accordingly. An apparent sulfur isotope enrichment factor of about -30 per milles is estimated from coexisting pore water sulfate and AVS of surface sediments. 34S/32S discrimination and corresponding cellular SRR are similar to results from pure culture studies. Below about 5 cm (Site 173) or 10 cm (Site 185) the delta34S values of H2S / AVS reached or even exceeded

the isotopic composition of seawater sulfate (up to +25 per mil; Site 173), in agreement with a limited supply rate of sulfate from the sediment-water interface. Most pyrite was formed within the first 5 cm of the sediments, but additional pyritization still took place in deeper sediment sections. Based on the sulfur isotope data AVS/H2S contributes to the deeper pyrite formation.