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The modeled profile (length is about 3000 km) crosses the contrasting morpholog-
ical structures of western USA. It starts in the Pacific oc€aBN; -125W), then

cross the Central Califronia, Great Valey, Sierra-Nevada Mountaints, Basin and Range
Province, Plateau Colorado, Rocky Mountaints, and finishes in the Great PA&INS (
-100W). Beneath the surface, the profile crosses interesting uppermost-mantle fea-
tures, including a high- velocity body beneath the Sierra-Nevada reaching a depth
of 200 km, undulations of lithosphere/asthenosphere boundary, edge of Precambrian
cratonic lithosphere, etc...

The gravity field of the ocean-continent transition is characterized by a steady decrease
from about -22 mGal free air anomalies over the Pacific plate, to negative Bouguer
anomalies down to -350 mGal over the Rocky Mountaints, and then inctease to near
zero values over the Great Plains. The gravity anomaly crossing by the profile is a
global minimum. Western USA is also characterized by negative geoid anomaly down
to -30m.

Most of the profile follows the seismic experiments lines. Seismic-geological structure
of the crust is compiled in accordance to [1-11]. Sesmic-geological crustal structure
changes dramatically along the profile. Oceanic part of the profile is presented by
thin (5-6) km high velocity (basalt/gabbro) oceanic crust. Shelf and coastal ranges
are characterized by (10-15) km thickness crust composed mostly of metasediments.
Great Valey is a deep sedimentary basin. In axial part beneath sediments the com-
plexes with mantle geophysical signatures are located. Batholith of Sierra-Nevada is
characterized by low seismic velocities.Q km/c) and thick (45-50) km crust. Basin



and Range Province is characterized by strongly deformed upper crust and flat Moho
at the depth30 km. Plateau Colorado, Rocky Mountains and Great Plains are less

studied by seismic investigations. Nevertheless, variations of crustall thickness and
structure were also revealed there.

There was executed a preliminary density modeling.

Model 1. Densities in water were fixed as 1.03 g/ccm, in sediments as 2.0-2.4, and in
the blocks of the crust as 2.85 g/ccm, in the blocks of the mantle as 3.30 g/ccm. This
model shows roughly the gravity effects of the water layer, the sedimentary basins,
and the undulations of the Moho boundary at fixed density contrast of 0.45 g/ccm.

Residual anomaly were up to 200 mGal. Besause density variations in the crust can
not compensate so great anomalies, it proves existence of mantle density anomalies.

Model 2. Densities in the mantle are allowed to vary within (3.15-3.50) g/ccm. This
model allow to define conventional mantle densities anomaly. A trend of density in-
crease toward inner parts of North American continent was revealed. The trend corre-
lates with increasing of seimic Pn velocities.
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