Geophysical Research Abstracts, Vol. 8, 08985, 2006 SRef-ID: 1607-7962/gra/EGU06-A-08985 © European Geosciences Union 2006

Fractionation of ¹³**C in maize is affected by assimilate partitioning**

M. Werth (1) and Y. Kuzyakov (1,2)

(1) Institute of Soil Science and Land Evaluation, University of Hohenheim, 70593 Stuttgart, Germany, (2) Institute of Landscape Matter Dynamics, ZALF, Muencheberg, Germany (kuzyakov@zalf.de)

The ¹³C natural abundance is a common tool for partitioning of CO₂ fluxes from soils and ecosystems. One of the limitations of the ¹³C natural abundance approach is high variation of the δ^{13} C values of CO₂ compared to the difference between the end members used for the CO₂ partitioning. Also ¹³C isotopic discrimination, which depends on the process reversibility and rates, may strongly affect the results of the CO₂ partitioning. Especially the ¹³C fractionation in the below-ground processes such as root respiration, exudation and rhizomicrobial respiration may shift the partitioning results.

We investigated ¹³C fractionation by root and rhizomicrobial respiration depending on assimilate partitioning between shoots, roots, exudates, and CO₂ respired by maize roots. To estimate the contribution of recently assimilated C to the root respiration and exudation, maize plants were pulse labelled in ¹⁴CO₂ atmosphere. The amount of recently assimilated C in shoots, roots, exudates, and respired CO₂ was controlled by three different levels of nutrient (N, P, K) supply and was traced by ¹⁴C after pulse labelling of shoots.

Increasing amounts of recently assimilated C in the shoots (from 69 to 76% of recovered ¹⁴C) and increasing shoot biomass led to a $0.2\%_0$ ¹³C depletion in the shoots. The opposite relationship was determined in the roots, where an increasing amount of recently assimilated C (from 8 to 10% of recovered ¹⁴C) led to a $0.3\%_0$ ¹³C enrichment. This enrichment rose by additional $0.3\%_0$ when C allocation in the roots was further increased (from 10 to 13% of recovered ¹⁴C).

 δ^{13} C of CO₂ evolved by root respiration was similar to that of the roots. However, if

the amount of recently assimilated C in root respiration was reduced, ¹³C fractionation between roots and respired CO₂ increased up to 0.7%₀. Increasing amounts of recently assimilated C in roots and root respiration led to δ^{13} C increase in both pools. Nutrient deficiency led to increase of δ^{13} C of respired CO₂ for 1.6%₀ compared to full nutrient supply. Strong nutrient deficiency also led to doubling of exudation amount accompanied by strong ¹³C depletion of 6.9%₀ compared to the full nutrient supply treatment. Nutrient deficient plants showed the same δ^{13} C of roots and exudates, whereas highnutrient supply decreased the amount of recently assimilated C in exudates and led to fractionation between roots and exudates of 5.3%₀.

We conclude that ¹³C discrimination between plant pools and within processes such as exudation and root respiration cannot be accepted as fixed and strongly depends on the C amount in the pool and on partitioning of recently assimilated C. Therefore, by the CO₂ efflux partitioning based on ¹³C natural abundance the ¹³C discrimination should be estimated for specific environmental and nutrient supply conditions.