Geophysical Research Abstracts, Vol. 8, 08020, 2006 SRef-ID: 1607-7962/gra/EGU06-A-08020 © European Geosciences Union 2006

Cassini/CIRS observations of Saturn at 7.18 microns

N. Iro (1), K. Matcheva (1), B. J. Conrath (2) and P. J. Gierasch (2) (1) Dep. of Physics, University of Florida, (2) Dep. of Astronomy, Cornell University (iro@phys.ufl.edu)

We analyze the thermal infrared spectra of Saturn obtained by the Cassini-CIRS instrument to infer thermal and cloud information for Saturn's stratosphere and upper troposphere. A narrow spectral window centered at 1392 cm⁻¹ (7.18 microns) allows us to probe the structure of Saturn's atmosphere in the vicinity of the 1 bar pressure level. Variations in the planet's emission at 1392 cm⁻¹ indicate the presence of an atmospheric absorber that is not uniformly distributed over the planet. The observed variations correspond to a zonal mean brightness temperature contrast of about 5 K. A numerical inversion is used to constrain the absorption coefficient, the optical thickness and the pressure level of the present cloud/haze layer. We present the results from our analysis at selected latitudes in Saturn's southern hemisphere.