Geophysical Research Abstracts, Vol. 8, 07403, 2006 SRef-ID: 1607-7962/gra/EGU06-A-07403 © European Geosciences Union 2006

The Turnover of N_2O in Soils at low O_2 Concentrations

B. Vieten (1), F. Conen (1), A. Neftel (2), T. Blunier (3)

(1) Institute of Environmental Geosciences, University of Basel, Switzerland, (2) FAL, Agroscope, Reckenholz, Switzerland, (3) Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland (b.vieten@unibas.ch / Phone: +41-61-2673661)

The project aims to improve the understanding of the bi-directional exchange of N_2O in agricultural soils by measuring gross production and uptake of N_2O within the soil profile. The overall hypotheses are that a large fraction of the gross production of N_2O is consumed before it is emitted to the atmosphere. Consumption is hypothesized to be a biological process with a first order kinetics.

Soils from three different locations in central Europe were studied in flow-through laboratory incubations for their behavior regarding N₂O consumption, using a N₂O/O₂ matrix (changes of N₂O and O₂ concentrations in time cycles). With this matrix the exchange of N₂O and O₂ could be determined at different combinations of N₂O and O₂ concentrations. At O₂ concentrations of 20 % and 2 % soils were small or zero net N₂O sources. No significant uptake (< 0.5 pmol g⁻¹ soil h⁻¹) of N₂O was found. Net uptake of N₂O was induced by low O₂ concentrations starting about 20 h after the change from 2 % to 0.2 % O₂. Net uptake rates were lineally dependent on N₂O concentrations up to about 1 ppm N₂O. At greater N₂O concentrations N₂O uptake rates approached saturation. The relative rate of N₂O uptake was exceeding the one of O₂ up to 15 times. Most likely the 20-fold larger solubility of N₂O in water compared to O₂ is responsible for this apparent preferential uptake.

To see whether part of the N₂O-N consumed remained in the soil, we exposed soil samples in a flow-through system for 11 days with 99 % labelled $^{15}N_2O$ (1.8 ppm N₂O, 0.2 % O₂, balance He). No change in $\delta^{15}N$ of the soil organic matter was found, indicating that > 99.9 % of N₂O must have been converted to N₂. In similar experiments with unlabelled N₂O at O₂ < 1 %, the fractionation factor for N₂O to N₂ transformation was about -12