Geophysical Research Abstracts, Vol. 8, 06310, 2006

SRef-ID: 1607-7962/gra/EGU06-A-06310 © European Geosciences Union 2006

Grace accelerometers calibration

F. Perosanz (1), J.M. Lemoine (1), S. Bruinsma (1), S. Melachroinos (2), R. Biancale (1), S. Loyer (3)

(1) CNES, 18 av Edouard Belin, 31400 Toulouse, France, (2) CNRS/UMR5562, 14 av Edouard Belin, 31400 Toulouse, France, (3) Noveltis, 2 av de l'Europe, 31520 Ramonville, France

The determination of calibration parameters of GRACE satellites accelerometers requires a very high level of precision (below 10-9 m/s2). An inverse method in which the full set of parameters (accelerometers, K-band, GPS, orbital, gravity model) are estimated simultaneously, is classicaly adopted. Because GRACE A and B satellites are very similar in shape, are flying the same orbit (only separated by about 220 km) and are linked by k-band observations, these adjusted parameters are highly correlated. We focus in this study on accelerometer biases and scale factors. Several strategies to apply a priori constraints to these unknows are presented including a new approach to recover very precise relative biases from raw accelerometer observations. The impact on GRACE orbit determination and derived gravity field coefficients improvement is evaluated. In addition, a high sensitivity to temperature variation of the GRACE accelerometers is demonstrated.