Geophysical Research Abstracts, Vol. 8, 06287, 2006

SRef-ID: 1607-7962/gra/EGU06-A-06287 © European Geosciences Union 2006

Development of a solid state sensor for the detection of stratspheric methane and hydrogen

J. Hill (1) and R. Jones (2)

(1) Hadley Centre for Climate Prediction and Research, MetOffice, United Kingdom, (2) Department of Chemistry, University of Cambridge, United Kingdom (julian.hill@metoffice.gov.uk)

Methane and water are important trace gases in the stratosphere and by discussing their sources, sinks, chemistry and transport a case is made for improved measurements in the lower stratosphere and upper troposphere. Various methods of measuring water vapour and methane are described and a novel technique for measuring combustable hydrocarbons and hydrogen is introduced. It is demonstrated that methane and hydrogen can be catalytically oxidising into a stoichiometric amount of water vapour which can then be measured using a frost point hygrometer. The catalyst will need to be kept at 450°C to get 100% oxidation of the available methane. The experiment results are complimented with modelling of the oxidation process in the reactor. A laboratory instrument with suitable characteristics to form the basis of a balloon sondé is presented as well as a prototype balloon instrument.