Geophysical Research Abstracts, Vol. 8, 05643, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05643 © European Geosciences Union 2006

The mechanism and kinetics of the uptake of CO₂, SO₂, HNO₃ and HCl on calcite (CaCO₃) at ambient temperature: the importance of adsorbed water on mineral dust

C. Santschi, M. J. Rossi

Laboratoire de Pollution Atmosphérique et Sol (LPAS/ISTE/ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(christian.santschi@epfl.ch, michel.rossi@epfl.ch / Phone: +41 21 693 5321 and 5320)

All experimental observations of the uptake of the four title compounds on calcite using a low pressure flow reactor are consistent with the reactivity of the reactive bifunctional surface intermediate $Ca(OH)(HCO_3)$ that has been proposed in the literature. The uptake of CO₂ and SO₂ occurs on specific adsorption sites of crystalline $CaCO_3(s)$ rather than by dissolution in adsorbed water, $H_2O(ads)$, that is present under the experimental conditions. SO_2 primarily interacts with the bicarbonate moiety whereas CO₂, HNO₃ and HCl all react first with the hydroxyl group of the surface intermediate. Subsequently, the latter two react with the bicarbonate group to presumably form $Ca(NO_3)_2$ and $CaCl_22H_2O$ thereby releasing CO_2 as a reaction product. The effective equilibrium constant of the interaction of CO₂ with calcite in the presence of H₂O(ads) is $\kappa = \Delta CO_2/((H_2O(ads)[CO_2]) = 1.62 \times 10^3 \text{ bar}^{-1}$ where ΔCO_2 is the quantity of CO₂ adsorbed on CaCO₃ at a given quantity of adsorbed water, H₂O(ads). The excess solubility for CO₂ and SO₂ exceeds the normal Henry's law solubility in $H_2O(ads)$ by more than six and eight orders of magnitude, respectively. The reaction mechanism involves a weakly-bound precursor species which is reversibly adsorbed and undergoes rate-controlling concurrent reactions with both functionalities of the surface intermediate. The initial uptake coefficients γ_0 on calcite powder depend on the abundance of $H_2O(ads)$ under the present experimental conditions and are on the order of 10^{-4} for CO₂ and 0.1 for SO₂, HNO₃ and HCl with γ_{ss} being significantly smaller than γ_0 for HNO₃ and HCl thus indicating partial saturation of the uptake. At 33% rh and 300K there are 3.5 layers of H_2O adsorbed on calcite which reduces to a fraction of a monolayer of weakly- and strongly-bound water upon pumping and/or heating.