Geophysical Research Abstracts, Vol. 8, 05125, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05125 © European Geosciences Union 2006

Ammonia frost and Titan's atmospheric windows

W. D. Smythe (1), R. M. Nelson (1), J. H. Shirley (1), and M. C. Boryta (2) (1) Jet Propulsion Laboratory, m/s 183-601, 4800 Oak Grove Drive, Pasadena, CA 91109 USA, (wsmythe@lively.jpl.nasa.gov/ Fax: +01 818-393-3218), (2) Mount San Antonio College, Walnut, CA USA, mboryta@oca.net

Introduction: NH_3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH_3 is seen in clouds in the atmospheres of Jupiter and Saturn, but has yet to be detected on any of the satellites. This may be because all forms of NH_3 are unstable in the ambient conditins of the satellites surfaces or that its spectral features are altered by other components of the surface, and have not been identified. However, NH_3 has been suggested as a possible source for sustaining Titan's thick nitrogen-dominated atmosphere. There is a limited amount of data available on the spectra of NH_3 ice and mixtures containing NH_3 at the pressure and temperature regimes of icy satellites.

Discussion: The laboratory spectrum of a thick NH₃ frost at 77K and with an approximately 0.5 millimeter grain size. The Titan spectrum is dominated by absorption features of CH₄ gas, the principal absorping specie in Titan's atmosphere. The only areas where a relevant comparison to NH₃ on Titan's surface can be made are at the wavelengths where CH₄ is mostly transmitting, These 'windows' in the Titan atmosphere are at 0.93, 1.08, 1.27, 1.59, 2.01, 2.69, 2.79, and 4.98 μ m. Note that the NH₃ absorptions at 1.51 and 1.68 μ m appear to align with the absorptions on the sides of the CH₄ window, centered at about 1.55 μ m, where inflections are apparent. The absorption at 2 μ m aligns with the 2.01 window and would appear as a level change. The window at 2.69 μ m is too opaque to strongly constrain evidence for NH₃.

Previous work by Fink & Sill [1], Roberts [2] and Pipes [3], employing thin film measurements provided absorption coefficients. The NH₃ absorption at \sim 3.3 μ m (ν 1) for the thin film measurements appear to be shifted relative to the frost measurements, which is centered at 3.0.

References: [1] Fink, U. and Sill, G. (1982) <u>Comets</u> 164-202, U. Arizona Press, L. Wilkening editor. [2] Robertson et al. 1975, *JOSA 65, 432-435* [3] Pipes et al., 1978 AIAA 16, 984-990

This work was performed at JPL under contract to NASA.