Geophysical Research Abstracts, Vol. 8, 04987, 2006 SRef-ID: 1607-7962/gra/EGU06-A-04987 © European Geosciences Union 2006

¹⁵N-nitrogen retention in a Belgian tidal freshwater marsh

B. Gribsholt, H.T.S. Boschker, A. Tramper, B. Veuger and J.J. Middelburg. Netherlands Institute of Ecology, Center for Estuarine and Marine Ecology. P.O. Box 140, 4400AC Yerseke, The Netherlands (B.Gribsholt@nioo.knaw.nl)

We used the stable isotope ¹⁵N to directly quantify the temporal pattern of N retention and loss in a tidal freshwater marsh fringing the nutrient rich Scheldt river (Belgium). ¹⁵N-ammonium was line injected *in situ* into intact sediment underlying undisturbed vegetation in eight 0.64 m²plots. Duplicate plots were placed in areas colonised by each of the main marsh vegetation types (the common reed *Phragmites australis*, mixed herbs dominated by *Impatiens glandulifera* and *Epilobium hirsutum*, and willows (*Salix* sp.)), and in unvegetated creek banks. Both short- and long term patterns of N retention were determined by quantifying changes in ¹⁵N in dissolved ammonium and nitrate, above- and belowground biomass, and extractable and whole sediment pools over a 1 year period. 50-80% of the added ¹⁵N-ammonium was quickly (days) removed by tightly coupled nitrification-denitrification. 20-40% was incorporated into the sediment, where it remained for 1 yr. ¹⁵N incorporation into bacterial Damino acids revealed that sediment microbial assimilation was due to bacteria. Once assimilated ¹⁵N was tightly recycled within the bacterial community. The temporal and spatial differences in marsh ¹⁵N retention will be discussed.