Geophysical Research Abstracts, Vol. 8, 03663, 2006 SRef-ID: 1607-7962/gra/EGU06-A-03663 © European Geosciences Union 2006

A diode-laser-based spectrometer for continuous in situ measurements of volcanic gases (CO_2, H_2O) concentration and soil degassing at Vulcano (Aeolian islands: Italy).

M. De Rosa (1), G. Gagliardi (1), A. Rocco (1), R. Somma (2), P. De Natale (1), G. De Natale (2)

(1) Istituto Nazionale di Ottica Applicata- CNR,, Sezione di Napoli, Via Campi Flegrei 34, I-80078 Pozzuoli (NA), Italy, (2) Osservatorio Vesuviano, INGV, Via Diocleziano, 328, I-80124 Napoli, Italy (somma@ov.ingv.it) Tel: ++39 081 6108362/Fax: ++39 081 6108351

We report the data obtained during a continuous measurements survey carried out at Vulcano (Aeolian islands-Sicily, Italy) and devoted to the simultaneous monitoring of CO₂ and H₂O gas concentrations and flux from the soil. The measurements were performed using a laser spectrometer based on a semiconductor laser source emitting around 2 μ m. The emitted radiation was selectively absorbed by two molecular rovibrational transition specific of each of the investigated species. The measurement campaign was held in August 25-29th, 2004. During the campaign the emissions at different sites: the beach of "Porto Levante", the valley downhill the crater "Palizzi" and the "Cratere Fossa Grande" were analysed. The gas concentration of CO2 and H₂O at "Porto Levante" range from 1,500 ppm to 450 ppm and from 51,700 ppm to 34,500 ppm respectively varying the geometry of the spectrometer configuration from ground level to 1,30 m height. The valley site and "Cratere Fossa Grande" show in average a slight change in CO₂ and H₂O concentrations ranging from 384 ppm to 564 ppm and from 35,200 ppm to 23,130 ppm respectively. Further, the flux rate of CO_2 at the different sampling sites ranges from 0.00172 s⁻¹ up to 0.00306 s⁻¹. The large amount of experimental data collected under different operational conditions during continuous in-situ efflux analyses have demonstrated that the concentration of CO₂ and H₂O, in contrast to traditional discrete gas monitoring of fumaroles, changes relatively rapidly. Thus, the continuous gas monitoring would allow us to detect an

oscillation of CO_2 concentration, probably due to a pulsing realise from a magmatic gases source.