Geophysical Research Abstracts, Vol. 8, 03462, 2006 SRef-ID: © European Geosciences Union 2006

A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data

Ch. Förste (1), F. Flechtner (1), R. Schmidt (1), R. König (1), Ul. Meyer (1), R. Stubenvoll (1), M. Rothacher (1), F. Barthelmes (1), H. Neumayer (1), R. Biancale (2), S. Bruinsma (2), J.-M. Lemoine (2)

(1) GeoForschungsZentrum Potsdam, Dept. Geodesy and Remote Sensing, Germany (e-mail: foer@gfz-potsdam.de, Telegrafenberg, D-14473 Potsdam, Germany, fax: ++09 331 288 1169),
(2) Groupe de Recherche de Geodesie Spatiale, 18, avenue Edouard Belin, F-31055 Toulouse, France (e-mail: richard.biancale@cnes.fr, fax: ++33 5 61 253098)

High-resolution global mean gravity field models can be derived from the combination of satellite tracking and surface data. With the CHAMP and GRACE satellite missions, a new generation of such global gravity field models became available. At GFZ Potsdam and GRGS Toulouse, CHAMP- and GRACE-based global gravity models of high resolution are routinely produced in the framework of the EIGEN processing activities (EIGEN = European Improved Gravity model of the Earth by New techniques). Here the latest results of a new generation of gravity model products, labeled EIGEN-04, are presented. These models were obtained from the processing of GRACE, CHAMP and SLR satellite tracking data and are compared with outcomes of former analyses. The satellite-based gravity field parameters are the result of a substantial satellite data reprocessing, based on recently improved processing standards and models. On the other hand, surface gravity data derived from altimetry and gravimetry are globally available, providing a higher resolution than pure satellite data but lacking the high precision in the long-wavelength part. The satellite-based data are combined with partially newly processed surface gravity data sets on the basis of normal equations to derive a global high-resolution gravity field model, combining the high precision and homogeneity in the long- to medium-wavelength part from the satellite data with the short-wavelength resolution of the surface data. The obtained Earth gravity field parameters are an update of former EIGEN models of a resolution corresponding to a wavelength of 100 km and degree/order 360, respectively.