Geophysical Research Abstracts, Vol. 8, 02005, 2006

SRef-ID: 1607-7962/gra/EGU06-A-02005 © European Geosciences Union 2006

Comparative study of the behaviour of radiostrontium and atmospheric common strontium in soils (Vosges mountains, France)

L. Pourcelot (1), P. Stille (2) D. Aubert (3), N. Solovitch-Vella (1), and **F. Gauthier-Lafaye** (2)

1. IRSN, St Paul-lez-Durance, France, (2) EOST - CNRS – CGS, Strasbourg, France, (3) CEFREM, Perpignan, France. (gauthier@illite.u-strasbg.fr)

The aim of the study is to trace the vertical distribution of atmospheric strontium by $^{87}\mathrm{Sr/^{86}}\mathrm{Sr}$ isotope ratios and by comparison with the $^{90}\mathrm{Sr}$ distribution in soil. $^{87}\mathrm{Sr/^{86}}\mathrm{Sr}$ isotope ratios of soil leachates are correlated with $^{90}\mathrm{Sr}$ activities. Samples from the uppermost part of a soil profile have low $^{87}\mathrm{Sr/^{86}}\mathrm{Sr}$ ratios and high $^{90}\mathrm{Sr}$ activities. Samples from the deeper parts of the soil profile, however, have high $^{87}\mathrm{Sr/^{86}}\mathrm{Sr}$ but low $^{90}\mathrm{Sr}$ activities. This points to mixing between an atmospheric and a geogenic component. Mixing calculations indicate that 50 to 80% of the Sr in the topsoil of a small catchment in the Vosges mountains is of atmospheric origin. Similarily $^{87}\mathrm{Sr/^{86}}\mathrm{Sr}$ and Sr concentrations of roots, sampled in one soil profile show strong mixing relationships between an atmospheric and geogenic component. $^{87}\mathrm{Sr/^{86}}\mathrm{Sr}$ ratios of soil leachates and corresponding roots are very similar indicating, that the roots integrate at each level of the soil profile the leachable Sr of the corresponding soil.