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Flux-form and cell-integrated finite-volume schemes
Finite-volume advection schemes can be divided into two categories:
1. Semi-Lagrangian type schemes, referred to as cell-integrated semi-
Lagrangian (CISL) schemes, in which the mass in cells moving with the
flow is tracked (e.g., Nair et al. 2002; Zerroukat et al. 2002). In upstream
CISL schemes cells that after one time step, ∆t, end up at the regular (Eule-
rian) grid are considered, that is,
mass over the shaded area in the
Figure, referred to as the departure
cell and with area δA, is tracked
as it moves with the flow and ends
up at the regular (Eulerian) cell, re-
ferred to as arrival cell and with
area ∆A, located in upper right cor-
ner of the Figure.
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The discretized CISL mass continuity equation is given by

ρ(t = ∆t) =
1

∆A

∫

δA
ρ(t = 0)dA, (1)

where ρ is the density of the fluid.
2.Eulerian type schemes in which the flux of mass through regular (Eulerian)
cell walls is tracked (e.g., Lin and Rood 1996). The flux-form discretization
is given by

ρ(t = ∆t) = ρ(t = 0)+
1

∆A

[

4

∑
!=1
m!

]

, (2)

where m! is the total inward mass flux through face ! during one ∆t. A graph-
ical illustration of m! is given on the Figures below. For example, the mass
flux through the right cell wall is the integral of ρ(t = 0) over the yellow
shaded area on Fig. a. Similarly for the other cell walls. So by adding up all
the yellow areas with the correct signs it is seen that (2) reduces to (1).

•Hence there is an equivalence between the CISL and Eulerian flux-form dis-
cretizations under the assumption that exact trajectories and integrals are used.
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•Here we explicitly consider the cascade CISL scheme of Nair et al. (2002)
and the widely used Lin and Rood (1996) scheme given by

ρ(t = ∆t) = ρ(t = 0)+Fx
[

1
2 (ρ + f y)

]

+Fy
[

1
2 (ρ + f x)

]

, (3)

where Fx is the discrete flux divergence in x and f x is the advective update in
x. F and f are referred to as the outer and inner operators, respectively.

Conceptual analysis
Assume a constant (in time and space) wind field. Lagrangian cells moving
with the flow will not deform, rotate, expand, or compress but move as solid
bodies (see Fig. below).
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• In this special case the CISL forecast is simply given by

ρ(t = ∆t)∆A=
∫

(IJKL)
ρ dA,

where (IJKL) refers to the departure cell with vertices at points A, B, C and
D (see Figure above).

Where does the information come from in the CISL forecast? Since CISL
schemes explicitly approximate the integral over the departure area the infor-
mation used for the forecast originates from the departure area as it physically
should.

•Where does the information come from in the Lin and Rood (1996) forecast
given by (3)? It is not clear in (3) where the information originates but by
rewriting (3) in terms of integral operators :

ρ(t = ∆t)∆A=
∫

(IJKL)
ρ dA+

1
2
[

Ix− Ĩx+ Iy− Ĩy
]

, (4)

where I & Ĩ are integral operators associated with the inner and outer opera-
tors in (3), respectively,

Ix =
∫

(MNOP)
ρ dA and Iy =

∫

(EFGH)
ρ dA,

(see Fig. above) it does become clear.

If inner and outer operators differ there are spurious
non-local contributions to the forecast proportional
to the difference between I and Ĩ over the non-local
areas (MNOP) and (EFGH)!

Stability analysis
A linear Von Neumann stability analysis has been performed. The discretized
solution is represented as a finite Fourier series and the stability of individual
Fourier components is examined.
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(a) LR-2-1
LR-3-3/NSS-3
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(b) LR-3-2
LR-3-3/NSS-3
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(c) LR-3-1
LR-3-3/NSS-3

Fig.: The figures show the squared
modulus of the amplification factor
for the Lin and Rood (1996, LR)
scheme for different combinations of
inner and outer operators as a func-
tion of symmetric Courant number
(µ) and wavelength (Lx = Ly). For
example, LR-3-2 refers to the LR
scheme using a 3rd order outer op-
erator and 2nd order inner operator.
Note that:
•LR-3-1 and LR-3-2
schemes become in-
creasingly diffusive with
increasing Courant number,

•LR-3-2 can be slightly un-
stable,

•Consistent with the concep-
tual analysis the LR scheme
employing different inner
and outer operators have a
spurious dependence on µ ,

•When the inner and outer operators in the LR scheme are identical this spuri-
ous non-local contribution to the forecast disappears and the scheme formally
becomes identical to the Nair et al. (2002, NSS) and Zerroukat et al. (2002)
schemes. This is, of course, not true for general flows.

•Note that this linear analysis did not include limiters (filters) which are inher-
ently nonlinear: General experience with finite-volume schemes suggests that
the unlimited case provides a baseline from which further dissipation and less
dispersion is induced by the limiter.

For more information see Lauritzen (2006).
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